Exponential random simplicial complexes
نویسندگان
چکیده
Abstract Exponential random graph models have attracted significant research attention over the past decades. These models are maximum-entropy ensembles subject to the constraints that the expected values of a set of graph observables are equal to given values. Here we extend these maximum-entropy ensembles to random simplicial complexes, which are more adequate and versatile constructions to model complex systems in many applications. We show that many random simplicial complex models considered in the literature can be casted as maximum-entropy ensembles under certain constraints. We introduce and analyze the most general random simplicial complex ensemble D with statistically independent simplices. Our analysis is simplified by the observation that any distribution O ( ) on any collection of objects O , { } = including graphs and simplicial complexes, is maximum-entropy subject to the constraint that the expected value of O ln ( ) is equal to the entropy of the distribution. With the help of this observation, we prove that ensembleD is maximum-entropy subject to the two types of constraints which fix the expected numbers of simplices and their boundaries.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملCrackle: The Persistent Homology of Noise
We study the homology of simplicial complexes built via deterministic rules from a random set of vertices. In particular, we show that, depending on the randomness that generates the vertices, the homology of these complexes can either become trivial as the number n of vertices grows, or can contain more and more complex structures. The different behaviours are consequences of different underly...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کامل